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1. Introduction
Fractional calculus theory is a mathematical analysis tool applied to the study of integrals and
derivatives of arbitrary order, which unifies and generalizes the notions of integer-order
differentiation and n-fold integration [1,2,3,4]. Commonly these fractional integrals and derivatives
were not known to many scientists and up until recent years, they have been only used in a purely
mathematical context, but during these last few decades these integrals and derivatives have been
applied in many science contexts due to their frequent appearance in various applications in the
fields of fluid mechanics, viscoelasticity, biology, physics, image processing, entropy theory, and
engineering [5,6,7,8] It is well known that the fractional order differential and integral operators are
non-local operators. This is one reason why fractional calculus theory provides an excellent
instrument for description of memory and hereditary properties of various physical processes. For
example, half-order derivatives and integrals proved to be more useful for the formulation of certain
electrochemical problems than the classical models [1,2,3,4]. Applying fractional calculus theory to
entropy theory has also become a significant tool and a hotspot research domain [9,10] Power series
have become a fundamental tool in the study of elementary functions and also other not so
elementary ones as can be checked in any book of analysis. They have been widely used in
computational science for easily obtaining an approximation of functions [11] In physics,
chemistry, and many other sciences this power expansion has allowed scientist to make an
approximate study of many systems, neglecting higher order terms around the equilibrium point.
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This is a fundamental tool to linearize a problem, which guarantees easy analysis[12,13 ] The study
of fractional derivatives presents great difficulty due to their complex integro-differential definition,
which makes a simple manipulation with standard integer operators a complex operation that should
be done carefully. The solution of fractional differential equations (FDEs), in most methods,
appears as a series solution of fractional power series (FPS) [14,15,16,17] We will study a
developed solution method, which is the combination of two methods of the power series and the
approximation of least squares with giving some examples and solving them in the developed way
and comparing with the real solution as shown in the drawing and the attached tables with examples

and programmed in Matlab.

2-Basic concepts of fractal differential equations

Defintion (1):In the theory of fractional calculus, the entire gamma function I'(t) plays a substantial

turn. An inclusive definition of I'(t) is that supplied by Euler limit [17]

NINt
') _l\lI—>oo t(t+1)(t+2)(t+N) ' t>0(1)

Whilst the beneficial integral convert form is defined by:
T=[,"y*" e U du,R(t) > 0 (2)

Defintion(2):The « th order left and right Riemann-liouville integrals of funaction y(x) are defined

on the interval (a,b) as following[1][18][22]:
al¢ y(©) = 5 [ 2 ds (3)

(x—s)1-¢

xIg y(t) = — [°-LD_ 4s ()

M) 7x (x—s)i-a

Where o > 0 are called fractional integrals of the order «, they are sometimes called left-sides and

right-sided fractional integrals respectively.

Defintion (3) : The a th order left and right Riemann-liouville drrivative of funaction y(t) are

defined on the interval (a b) are given as[1, 18, 22]
RL D&,y (t) = f (x— D"t y(v)dt (5)

d —a—
RL DZ,y(x) = 12 == [P(r = 0" y(1)dr (6)

wheren—1<a<n €zt.

F(n o) dxn

2.1:the composition of Riemann-liouville fractional integral and derivative

. If F € C[0, o),then the Riemann-liouville fractional order integral has the
following important property [1],[18]:

14(1P f(x)) = IF(1*f(x)) = 1P f(x) where a > 0 and § > 0

F(a 5 f(x _ @B £(p) dt

o let use consider the fractional derlvatlve of order o a fractional derivative
of order B [2],[19]
D*(DFf(t)) = D**f (1)
. fora > 0,t > 0 [2],[3]
D(I%f(t)) = f(t)
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. DE(Af() + ug(®)) = AD%f(t) + ub%g(t) [2]

. D¥(kf(t)) = kD*f(t) a >0

. DA(f(1).g(®) = [Df(©)]. (&) + fF()[D*g(V][2]
o DY(f()+g(®) =D (t) +D%(t) « €R

2.2 The derivative of fractal differential equation[2][18]

o D%(x") = 1“{;?—;41-)1) n-a

. D%*(sin ax) = a%sin (ax + ga)
. D%(cos ax) = a*cos (ax + ga)
. D% (k) = k¢ ekx

¢ DO =

2.3:leaste square approximation:

Definition(4) Another approach to approximating a function f(x) on an interval a <x <b is to seek
an approximation p(x) with a small ‘average error’ over the interval of approximation. A convenient
definition of the average error of the approximation is given by[17][18]

E; ) = [ [ IF) = peo]| ()
This is also called the root-mean-square-error (denoted subsequently by RMSE) in the
approximation of f(x) by p(x). Note first that choosing p(x) to minimize E(p; f) is equivalent to
minimizing
b 2
J [f () = p(x)]? dx (8)
thus dispensing with the square root and multiplying fraction (although the minimums are generally

different). The minimizing of (8) is called the least squares approximation problem For a given
function

2.4:solution of homogeneous fractal differential eqution
The Power series is a fundamental tool in the study of elementary functions. They have been widely
used in computational science for easily obtaining an approximation of functions. In thermal
physics and many other sciences this power expansion has allowed scientist to make an
approximate study of many differential equations
Theorem(1): Suppose that u(t) has a FPS representation at t = tO of the form [19]:
y() = X oCn (t—to)* = o+ ¢y (t— to)* + cy(t — to )2% + -+ (n time ) (9)
Where0 <m —1<a <m,m€ N*and t > t- is called afractional power series about t- where ¢
is variable and c,,are the coefficients of series and will be of the form[24]

_ D™y(to) (10)

n- ['(na+1)
Theorem(2): Suppose that the fractional power series Y-, ¢, t™* has radius of convergence R >
0. If £(t) is afunaction defined by f(t) = Yoo cpt™® 0On
0<t<RThenform—1<a<mand0 <t <R we have[21][24]
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D) = Tieo cn ey €00 (10)

(na—a+1)

6(8) = B0 n iy L 04(12)

(na+a+1)

(2.4.1)Fractional residual power series method

we intend to use the FRPS method to solve a class of solid systems In fractional order by replacing
FPS expansions within the remaining truncation functions. To do this, we assume that the FPS
solution at t = 0 has the following form: The objective of the FRPS algorithm is to obtain an
approximate solution supporting the the proposed model. Thus, using the initial conditions, it can be
written as follows[25]

. Cntan
Y= Zn:O F(na+1) (13)
And the solution approximation is
. Cntan
y(®) = o+ Tt fiarry (4

Example(1): consider the fractional differential equation
Solve Dy —y =0

<X and We substitute it in the given equation[24].

Solution: Suppose that y = Y5 I(na+1)

lety = Z F(na N

DE( F(na + 1)) (Z IF(na + 1)) =0

n=0

= o cx@
(; I'(na + 1) x > B <n=0 I'(na + 1)) =0
C c" F(na +1) e > cnyan _ 0
L Fna + Dl(ha —a +1) T r Tha+1))

® CTl na s Cnxan B 0
;F(cx(n D+ - T LiTa+1) "~

letk=n—1k=n
i ) (S Y,
I'(ka + 1) e [(ka + 1)

n=0

had xak xak

k+1 _ 0 d— 0
Z)C <F(ak n 1)) T
cktl _ck=0=2ck(c—1)=0butck+0=2c=1

2a 3a

_ 1_x% 2_X 3_ % 4.
Y(x) =c +c T'(a+1) te r(2a+1) F(3a+1)'
cx®
The genral solution is y = 7o oo,
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3. Suggested method for solving nonhomogeneous fractal differential equations

power series with the use of least squares approximation
If we had a non-homogenuse linear fractal differential equation in the form for example
, D% + by = f(x), it is solved by a power series method, which is to substitute for each y =

. cpxne . . .
Yo TnaiD and simplify the expression

D%y + by = f(x)
had Cnxna
yoy
I'na+1)
n=0
had I8 xna had C xna
Daz n z n _
I"(na+1)+b I'(na +1) f@&)
n=0 n=0
CTl CTl
Da na bz na _—
7Z)F(na+1) e n_OF(na+1)x &)

[oe)

e ). e
OF(na+1)F(na+1—a) OF(na+1)
n= n=

Cn a(n-1) b Z Cn na _—
Z)I"(na+1—a)x * 0F(na+1)x &
n= n=

[ee)

xa(n—l) xne
chlF(na+1—a)+bF(na+l)l =/t

n=0

a(n-1) na

x
(na+1-a) r'(na+1)

X

We assume the [r ] =w,

D awn = f()
n=0
CoWo + CiWq + Cowy + -+ + cpwy, = f(x)
By using least squares approximation
b
A= [ (T(y) — y)* (15)
T(y) = Xazo cnwn — f(x)(16)
Y = S0 A = Big Cn va (17)

We substitute (16), (17) in (15)

A=Jl- (; CnWn —f> — ;cnvn]
br, © 2
A= f (Z Cn(Wp — ) — f)
a L\n=0
b

A= f (o (o) + ¢, (Wy_v1) + €y (Wy_1y) + -+ C(Wyy_1y) — f)?
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b
dA
ac =2 j(a’ (We_ve) + c1(Wy_v1) + co(Wy_v) + -
A ab
9, 2 fa (ce (Wo_ve) + ¢4 (Wy_vy) + co(Wo_vp) + -
dA

dc

b
dA
ac. =2 f(c° (Wo_ve) + c;(wy—v1) + co(Wp_v) +
n a
T=w-v

0=2 f;(co To+ 1Ty + ¢, Ty +...Fcypwy, — )T
0=2[ (c:Te+ c;Ty + Tyt HCaWy — Ty

0=2[ (c:Te+c;Ty + Tyt HCaWy — T

0=2[ (c:Te+ c;Ty + Tyt CqWy — /Ty

0= [ (cTe+ Ty + Tyt 4cy T — )T

0= f:(co To+ c1Ty + ¢ Tot+e, Ty — )Th

0= f:(co To+ ¢, Ty + ¢, Tot.. . +c, Ty — T,

0= f:(co To+ 1Ty + ¢, To+.. . +cy Ty — )Ty,

0= [ (e ToTo + ¢, Ty To + €Ty Tt +C T To — fT)
0= [ (e ToTy + ey Ty Ty + ¢ ToTy+.. +ep Ty — fT1)
0= [ (c:ToTy + 1Ty Ty + €Ty Tyt e T Ty — fT5)

0= [ (e ToTy + &1 Ty Ty + CoTa Tyt TuTy — fTy)
Letn - 2 = Co‘ CIJCZ

b b

f COTOTO + C1T1T° + C2T2To = ffTo

a
b

a
b
f COTOTl + C1T1T1 + C2T2T1 = fle
a a

b b

af

C TOTZ + C1T1T2 + C2T2T2 == fsz
a
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+ cn(Wn_vp) — f)(we_ve) = 0
+ cn(Wy—vp) — f)wy_v;) =0
+ Cn(Wn—vn) - f)(WZ—UZ) =0
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b
T f T,T-
a
b
T.T, j T?
a
b
o [n j [ s,
a a - -
- b b -
f T j T,T-
a a
b b
let j T.T, j T
a

[ fin | |[m

And the above descrlbed IS solved to extract the unknown C values according to the equation
(AT.A)7*AT.B = C (18)

—_—

ﬂ
%

é\wn\wm

Co
T,T,| = A4, jle = B and [01]=c
C2

4. implimentations and comparisons of proposed method

We will make a comparison between the solution in the assumed way and the exact solution for the
two examples shown below and through Figures (1) and (2) and the data table (1), (2) we will find
the error value as shown in the mentioned tables

1
Example(2) solve the fractal differentialDz y = x?%,a = % andn=4,y(0)=0

1 1
(Diy=x?) s D
1 1

DZDZy = D2 x?
ERORY:
F( )
dy 2 32
ax ~ wm ¥’
4
o _ 8 2
dx 3w xz
fdy J— X2 dx
8 5
y = ? Xz = + c,c=0
y = T_ xz is the exact solution and solving the fractal differential eqution by the proposed
1
method equationDz y = x?
lety = X"

n=0rma+1)
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D3 i X
(I"(na +1) )=x
n=0
Cn : A\ — 42
Z(F(na +1) ) =x
& I'na+1)

) a(n—l) = x2

F(na+1) 'ha—a+1)

I'(na+1)
F(na+1) I'ha—a+1)

Cn an-1) — .2
Z)(F(na—a+1))x x
n=

) a(n—l) = x2

xa(n-1) a(n-1)
— 22 __x
Zn 0 nl"(na a+1) = x“let Wn = r'(na—a+1)
Z CoWy, = x2
n=0
1
= [ -7
0
d na
T(y) = Z —xllety = ————
n=0
A= f (Zn 0CnWn — x Zn 0Cn Un) y= Zn 0CnUn
= f(z CnWp — Z CnVUp —
0 n=0 n=0

1 [ee]
A= fo (=0 CnWn — Cpp — x%)?
1 3
A= J(Z co(wy, — v,) —x%)?letn =3
n=0

0
1

= f(co(wo — vo) + c;(wy — 1) + c,(wy — vy) + c3(wg — v3) — x2)?

0

ISSN: 2094-0343
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dA

Fy 2 f(co(wo —ve) + c;(wy — 1) + c,(Wy — vy) + c3(wz — v3) — x2) (We — 15)

oA ,

e 2 j(co(wo —ve) + c;(wy —vq) + oWy — ;) + c3(ws — v3) — x%)(wy — vy)
1

0A
ac,
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dA
en 2 j(c°(W° —ve) + c;(Wy — vp) + +cp(Wy — v3) + c5(wz — v3) — x*) (w3 — v3)
3
0

1

0=2 f(c°(W° —ve) + c1(wy — vp) + +ca(wy — 1) + c5(wz — v3) — x*)(We — ve)
0=2 f(C"(W" — Vo) + c1(Wy — v1) + +ca(wWy — 1) + 3wz — v3) — xH)(wy — vy)

0=2 J(C°(W° — 1) + c1(Wy — v1) + +co(wy — ;) + c3(wz — v3) — x2) (W, — v,)
1
0=2 f(c°(W° —ve) + (W — vp) + +c(wWy — ) + c3(wz — v3) — x*) (w3 — v3)

0= f(C°(W° —ve) + c;(wy — vp) + +ca(Wy — 1) + c3(wz — v3) — x*)(We — v0)

0 = f (colwe — 1) + ¢ (Wy — 1) + +C(Wp — 1,) + c3(ws — v3) — x2) (W — 1)

0= fol(c"(W" —ve) + c1(Wy — v1) + +ca(Wy — 1) + 3wz — v3) — x*) (W, — 1)
1

0= f(c°(W° —ve) + c1(Wy —vp) + e (wy — v,) + c3(wz — v3) — x%) (w3 — v3)
0
letT=w—v

0= I(COTO + C1T1 + C2T2 + C3T3 - xz)To

0 = f(CDTO + C1T1 + C2T2 + C3T3 - xz)T]_

1

= f(COTO + C]_Tl + C2T2 + C3T3 - xZ)TZ

0
1

0 - f(CoTo + C1T1 + C2T2 + C3T3 - XZ)T3

1 1

1 1 1
j COTOTO + J C1T1T0 + J C2T2T0 + J C3T3T° - sz TO
0 0

0

0

% 1 1
fcoToTl fclTlTl chTZTl +fc3T3T1 —fxz T,
0 0 0 0
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1 1 1 1 1
fcoToTz +fclT1T2 +fc2T2T2 +fc3T3T2 —fxz T,
0 0 0 0 0
1 1 1 1 1
fcoToT3 +fclT1T3+fczT2T3 +fc3T3T3 —fxz Ts
0 0 0 0 0
1 1 1 1 1
J CoToTo + J C1T1T° + f C2T2T° + J C3T3T° = XZ To
0 0 0 0 0
1 1 1 1 1
jCOTOTl + J C1T1T1 + j C2T2T1 + f C3T3T1 = sz T1
0 0 0 0 0
1 1 1 1 1
f COTOTZ + f C1T1T2 + f C2T2T2 + f C3T3T2 = .l-xz T2
0 0 0 0 0
1 1 1 1 1
f C0T0T3 + f C1T1T3 + f C2T2T3 + f C3T3T3 == fxz T3
0 0 0 0 0
r 1 1 1 1 r 1
fToTo leTo szTo fT3To fxz To
0 0 0 0 0
1 1 1 1 1
[rr [rr [mn [rnjey |[<n
0 0 0 0 Ci|l _|o
1 1 1 1 C,| |1
f T.T, f T,T, f T,T, f T,T, [ LC3 f x%T,
0 0 0 0 0
1 1 1 1 1
fTng fT1T3 J.TZT3 fT3T3 fxz Ty
L0 0 0 0 Lo
el (= Oreeanon | /
05 //
>03 //
///
02 e
1
0.1 /‘7/
06 0.1 :(;f;);: 0.4 0; 0‘(; ;7 0.8 0.9 41
Figure (1): The approximate solution of Example (2) for some a = 0.5
124
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1
Example(3) solve the fractal differentialDz y = x? — 2x,a = % andn=3,y(0) =0
Dz y= x*—2x
5
y = ﬁ_ Xz + %_xz is the exact solution and solving the fractal differential eqution by the
Suggested method equationDé y=x2—-2x(1)
oo Cpx™
lety = zn_omﬂ) (2)
e N -
bz Z (na+1))_x -
xne _
Z(I’(na+1) ) =% = 2x
z( F(na + 1) ) (x(n—l) — xz — 2
F(na+1) I'ha—a+1)
Table (1) Approximate solutions for the example(2)
x y(Direct solution) y(Developed method) Error
0.0000000 0.0000000 0.0000000 0.0000000
0.1000000 0.0019027 0.0019031 0.0000004
0.2000000 0.0107632 0.0107654 0.0000022
0.3000000 0.0296599 0.0296659 0.0000060
0.4000000 0.0608859 0.0608981 0.0000123
0.5000000 0.1063632 0.1063846 0.0000214
0.6000000 0.1677817 0.1678154 0.0000338
0.7000000 0.2466673 0.2467169 0.0000496
0.8000000 0.3444224 0.3444917 0.0000693
0.9000000 0.4623519 0.4624450 0.0000930
1.0000000 0.6016811 0.6018022 0.0001211
z( I'(na+1) JreD) Z 32 _ oy

F(na+1) I'ha—a+1)

an-1) — 2 _
Z(F(na—a+1))x X
a(n 1) 2 _ xa(n—l)

Zn 0 nl"(na a+1) =X Zxletwy, = r(na—a+1)
Z oWy = x2
n=0

1

- [am-» @
0
125
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o na
T(y) = ZO CoWy, — (x2 — 2x)letv = CTE)
n=
1 0 00 o
A= fo (Zn=o CnWn — (x* = 2%) — X0 Cn Vn)? ¥ = =0 Cn Vn
1 o <)
A= f(z CnWn — z Cn VUp — (x% = 2x))?
0 n=0 n=0
1 [ee)
A= fO (Xn=0 CnWn — CnVp — (x? = 2x))?
1 3
A= f Z ch(wy, — 1) — (x2 = 2x))%2 letn =3
o n=0
1
A= f(co(wo — vo) + ci(wy —vy) + c;(wy — v,) — (2% — 2x))2
0
1
dA 5
EP 2 f(c°(W° —vo) + ci(wy —v1) + c;(wy — v5) — (% — 2x)) (We — o)
0
1
dA 5
e 2 f(CfJ(WfJ — o) + c;(wy —vy) + co(wy — v3) — (%% — 2x)(wy — vy)
! 0
1
dA
Y 2 f(c°(W° —vo) + c(Wy — vp) + (W — 1) — (%% = 2x) (W, — 1)
2
0
1
0= f(co(wo —vo) + c;(wy —vp) + +cy(wy — ) — (%2 — 2x)(We — 1)
0
1
0= fo (co(we — o) + C1(W1 - V1) + +Cz(W2 - Vz) - (xz - Zx)(W1 - V1)
1
0 = [, (co(we — 1) + c1(Wy — v1) + +ca(wy — 1) — (x% = 2x)) (W, — V)
letT=w—v
1
0= f(coTo + ¢1Ty + T, — (x2 — 2x))Te
0
1
0 = -]-(COTO + C1T1 + C2T2 - (xz - 2x))T1
0
1
0 = f(CDTO + C]_Tl + C2T2 - (xz - ZX))TZ
0
1 1 1 1
JcoToTo +JC1T1T0 + f c;T,Te = J(x2 —2x)To
0 0 0 0
1 1 1 1
jCOTOTl + J C1T1T1 + f C2T2T1 = j(xz - ZX) Tl
0 0 0 0
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1 1
f COTOTZ J. C1T1T2 f C2T2T2 = f(xz - ZX) TZ
0 0
- 1 -
fToTo leT leTz f(xz —2x)Ts
0 o 0
1 1 C. 1
[rn [ [r[a]-|[e-2om
0 0 0 Ca
1 1 1 1
jT°T2 fT1T2 szTz j(xz —2x) T,
Lo 0 0 . L0 .
0 .
o1f g Ty
0.2 \\\
0.3 \\
> \\\
>-05f i
-0.6 [ \\\\
07t ™ 1
*
-0.8 | \
0.9 f t
70 01 02 03 04 05 06 07 08 09 1
X
Figure (2): The approximate solution of Example (3) for some a = 0.5
Table (2) Approximate solutions for the example(3)

x y(Direct solution) | y(Developed method) Error
0.0000000 0.0000000 0.0000000 0.0000000
0.1000000 -0.0456644 -0.0456736 0.0000092
0.2000000 -0.1237768 -0.1238017 0.0000249
0.3000000 -0.2175059 -0.2175496 0.0000438
0.4000000 -0.3196507 -0.3197150 0.0000643
0.5000000 -0.4254528 -0.4255384 0.0000856
0.6000000 -0.5313086 -0.5314156 0.0001069
0.7000000 -0.6342872 -0.6344149 0.0001276
0.8000000 -0.7318976 -0.7320448 0.0001473
0.9000000 -0.8219590 -0.8221244 0.0001654
1.0000000 -0.9025217 -0.9027033 0.0001816
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5. conclusions:

In this paper, a new method has been successfully applied to solve heterogeneous fractal differential
equations, which is the integration of the power series method and the method of approximating
least squares.

The approximation is very close to the exact solution, so the results obtained show that the method
is reliable and effective for solving a wide range of differential equations of the fractional order.
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