Intuitionistic Fuzzy RG-ideals of RG-algebra

Showq Mohammed Abrahem^{#1}, Areej Tawfeeq Hameed^{*2} Department of Mathematics, Faculty of Education for Girls, University of Kufa, Iraq showqm.ibriheem@uokufa.edu.iq, areej.tawfeeq@uokufa.edu.iq

Issue: Special Issue on Mathematical Computation in Combinatorics and Graph Theory in Mathematical Statistician and Engineering Applications	<i>Abstract</i> The purpose of this paper is to introduce the concept of Intuitionistic fuzzy of RG-algebra, as well as to state and prove various theorems and properties. Intuitionistic fuzzy RG-algebras and Intuitionistic fuzzy RG- ideals are also investigated for their fuzzy relations.
Article Info Page Number: 169 - 184 Publication Issue: Vol 71 No. 3s3 (2022)	 Keywords: RG-algebra, intuitionistic fuzzy RG-subalgebra, intuitionistic fuzzy RG-ideal, the homeomorphic of them. 2010 Mathematics Subject Classification: Primary 26A33, 44A05, Sacandary 24A07.
Article History Article Received: 30 April 2022 Revised: 22 May 2022 Accepted: 25 June 2022 Publication: 02 August 2022	Secondary 34A08, 34A07.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh [16] and has since undergone a number of expansions. One such these is Atanassov's [1-4] idea of intuitionistic fuzzy sets.

Intuitionistic fuzzy sets give both degrees of membership and non-membership of an element in a given set, while fuzzy sets give only a degree of membership.Both degrees fall inside the range [0,1], hence the sum should not be greater than 1.The class BCK-algebra is a legitimate subclass of the class BCI-algebras, as is well understood.Intuitionistic fuzzy H-ideals in BCK algebras were recently proposed by Senapati and coworkers [14-15, 17-20].

There has been a lot of discussion on fuzzy translations and ideals in BCK/BCI-algebras.

On the one hand, R.K. Omar [12] proposed the idea of RGO algebras, RG-ideals, and RG subalgebras and examined their connections, while P. Patthanangkoor [13] developed the idea of RG algebra homomorphism and looked into certain associated characteristics.

According to Hameed and colleagues, fuzzy subalgebras of RG-algebras as well as fuzzy ideals of RG-algebras are new ideas that have been examined in [9].According to [10]. T. Hameed and S.M. Abrahem proposed the concept of doubt fuzzy RG-ideals of RG-algebras and investigated the homomorphism image and inverse image of doubt fuzzy RG-ideals.

RG-subalgebras and RG-ideals on RG-algebras are introduced, and a wide range of their properties are examined, in this study. There are also connections between intuitionistic fuzzy RG-algebras.

2. Preliminaries

Now, we give some definitions and preliminary results needed in the later sections.

Definition 2.1. [12]: An algebra (X;*,0) is called RG-algebra if the following axioms are satisfied: $\forall \rho, \tau, z \in X$,

(i) $\rho * 0 = \rho$,

(ii) $\rho * \tau = (\rho * z) * (\tau * z)$,

 $(iii)\rho*\tau=\tau*\rho=0 \text{ imply } \rho=\tau.$

Remark 2.2. [12]: In (X;*,0) an RG-algebra, we define a binary relation (\leq) by putting $\rho \leq \tau$ if and only if $\rho * \tau = 0$.

Definition 2.3. [12,13]: Let (X;*,0) be an RG-algebra, a nonempty subset Iof X is called an RG-ideal of X if $\forall \rho, \tau \in X$

i) 0 ∈ I,

ii) $\rho * \tau \in I$ and $0 * \rho \in I$ imply $0 * \tau \in I$.

Proposition 2.4. [12,13]: In an RG-algebra (X;*,0), every RG-ideal is a subalgebra of X.

Proposition 2.5. [12]: In any RG-algebra (X;*,0), the following hold: $\forall \rho, \tau, z \in X$,

- i) $\rho * \rho = 0$,
- ii) $0 * (0 * \rho) = \rho$,
- iii) $\rho * (\rho * \tau) = \tau$,
- iv) $\rho * \tau = 0$ if and only if $\tau * \rho = 0$,
- v) $\rho * 0 = 0$ implies $\rho = 0$,
- vi) 0 * $(\tau * \rho) = \rho * \tau$.

Proposition 2.6. [12]: In any RG-algebra (X;*,0), the following hold: $\forall \rho, \tau, z \in X$,

i) $(\rho * \tau) * (0 * \tau) = (\rho * (0 * \tau)) * \tau = \rho$, ii) $\rho * (\rho * (\rho * \tau)) = \rho * \tau$, iii) $(\rho * \tau) * z = (\rho * z) * \tau$, iv) $\rho * \tau = (z * \tau) * (z * \rho)$, v) $((\rho * \tau) * (\rho * z)) * (z * \tau) = 0$.

Theorem 2.7. [13]: If f: $(X; *, 0) \rightarrow (Y; *, 0)$ is a homomorphism of an RG-algebras

respectively X, Y, then

1)
$$f(0) = 0'$$
.

2) f is injective if and only if ker $f = \{0\}$.

Definition 2.8. [16]: Let(X;*,0) be a nonempty set, a fuzzy subset μ of X is a function μ : X \rightarrow [0,1].

Definition 2.9. [16]: For any $t \in [0,1]$ and a fuzzy subset μ of a nonempty set X, the set

 $U(\mu, t) = \{\rho \in X \mid \mu(\rho) \ge t\}$ is called an upper level cut of μ , and the set

 $L(\mu, t) = \{\rho \in X \mid \mu(\rho) \le t\}$ is called a lower level cut of μ .

Definition 2.10.[9]: Let (X; *, 0) be an RG-algebra and S be a nonempty subset of X. Then S is called an RG-subalgebra of X if $\rho * \tau \in S$, for any $\rho, \tau \in S$.

Proposition 2.11. [9]: In an RG-algebra (X; *, 0) every RG-ideal is a RG-subalgebra of X.

Definition 2.12.[9]: Let (X; *, 0) be an RG-algebra, a fuzzy subset μ of X is called a fuzzy RG-subalgebra of X, if $\forall \rho, \tau \in X, \mu(\rho * \tau) \ge \min \{\mu(\rho), \mu(\tau)\}$ sets.

Definition 2.13.[9]: Let (X;*,0) be an RG-algebra, a fuzzy subset μ of X is called a fuzzy RG-ideal of X if it satisfies the following conditions: $\forall x, y \in X$,

(i) $\mu(0) \geq \mu(\rho)$,

(v) $\mu(0 * \tau) \ge \min \{\mu(\rho * \tau), \mu(0 * \rho)\}.$

Proposition 2.14. [9]: Every fuzzy RG-ideal of RG-algebra (X; *, 0) is a fuzzy RG-subalgebra of X.

Proposition 2.15.[9]: 1- The intersection of any set of fuzzy RG-subalgebras of RG-algebra (X; * , 0) is also fuzzy RG-subalgebra of X.

2- The union of any set of fuzzy RG-subalgebras of RG-algebra is also fuzzy RG-subalgebra, where is chain (Noetherian).

3- The intersection of any set of fuzzy RG-ideals of RG-algebra (X; *, 0) is also fuzzy RG-ideal of X.

4- The union of any set of fuzzy RG-ideals of RG-algebra is also fuzzy RG-ideal, where is chain (Noetherian).

Definition 2.16.[1,2]: Let f: $(X;*,0) \rightarrow (Y;*',0')$ be a homeomorphism from the set X into the set Y. If μ is a fuzzy subset of X, then the fuzzy subset $f(\mu)$ in Y defined by:

 $f(\mu)(\tau) = \begin{cases} \sup\{\mu(\rho): \rho \in f^{-1}(\tau)\} \text{ if } f^{-1}(\tau) = \{\rho \in X, f(\rho) = \tau\} \neq \emptyset \\ 0 \text{ otherwies} \end{cases}$

is said to be the image of μ under f.

Similarly, if β is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \circ f)$ in X, (i.e. the fuzzy subset defined by $\mu(\rho) = \beta(f(\rho))$, for all $\rho \in X$) is called the pre-image of β under f.

Definition 2.17.[8]:

1) fuzzy subset μ of algebra (X; *, 0) has inf property if for any subset T of X, there exist $t0 \in T$ such that μ (t0)=inf_{t $\in T$} μ (t).

2) fuzzy subset μ of algebra (X; *, 0) has inf property if for any subset T of X, there exist $t0 \in T$ such that $\mu(t_0) = \sup \{\mu(t) | t \in T\}$.

Remark 2.18.[1,2]: fuzzy subset \aleph in X is defined as $\aleph = \{(\rho, \mu_{\aleph}(\rho)) | \rho \in X\}$ where $\mu_{\aleph}(\rho)$ denotes to the degree of the membership value of ρ in \aleph and $0 \leq \mu_{\aleph}(\rho) \leq 1$.

Definition 2.19. [1]: An intuitionistic fuzzy subset \aleph in a nonempty set X is an object having the form $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ or $\aleph = (\mu_{\aleph}, \nu_{\aleph})$, where the functions $\mu_{\aleph} \colon X \to [0,1]$ and $\nu_{\aleph} \colon X \to [0,1]$ denotes to the degree of the membership and the degree of non membership respectively, and $0 \le \mu_{\aleph}(\rho), \nu_{\aleph}(\rho) \le 1$, for all $\rho \in X$.

Definition 2.20.[10]: Let (X; *, 0) be an RG-algebra. μ be a fuzzy subset of X, μ is called doubt fuzzy RG-subalgebra of X if for all $\rho, \tau \in X \mu(\rho * \tau) \leq \max\{\mu(\rho), \mu(\tau)\}$,

Definition 2.21.[10]: Let (X;*,0) be an RG-algebra, a fuzzy subset μ of X is called a doubt fuzzy RG-ideal of X if it satisfies the following conditions: $\forall x, y \in X$,

 $1.\,\mu(0)\leq\,\mu(\rho).$

2. $\mu(0 * \tau) \leq \max\{\mu(\rho * \tau), \mu(0 * \rho)\}.$

Proposition 2.22.[10]: Every doubt fuzzy RG-ideal of RG-algebra (X; *, 0) is a doubt fuzzy RG-subalgebra of X.

Definition 2.23.[1]: If $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ and $B = \{(\rho, \mu_{B}(\rho), \nu_{B}(\rho)) | \rho \in X\}$ are two intuitionistic fuzzy subsets of X, then

1) $A \subseteq B$ if and only if $x \in X$, $\mu_A(x) \le \mu_B(x)$ and $v_A(x) \ge v_B(x)$.

2)A = B if and only if $x \in X$, $\mu_A(x) = \mu_B(x)$ and $v_A(x) = v_B(x)$.

3)A \cap B = {(ρ ,($\mu_A \cap \mu_B$)(x),($v_A \cup v_B$)(x) |x \in X}.

4) A \cup B = {(ρ ,($\mu_A \cup \mu_B$)(x),($v_A \cap v_B$)(x) |x \in X}.

Proposition 2.24.[10]:

1- The intersection of any set of doubt fuzzy RG-subalgebras of RG-algebra (X; *, 0) is also doubt fuzzy RG-subalgebra of X, where is chain (Arterian).

2- The union of any set of doubt fuzzy RG-subalgebras of RG-algebra is also doubt fuzzy RG-subalgebra.

3- The intersection of any set of doubt fuzzy RG-ideals of RG-algebra (X; *, 0) is also doubt fuzzy RG-ideal of X, where is chain (Arterian).

4- The union of any set of doubt fuzzy RG-ideals of RG-algebra is also doubt fuzzy RG-ideal.

Definition 2.25. [1]: \aleph mapping f: (X;*,0) \rightarrow (Y;*,0)be a homeomorphism of BCK-algebra for any IFS $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ in Y, we define IFS $\aleph^{f} = \{(\rho, \mu_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\rho)) | \rho \in X\}$ in X by $\mu_{\aleph}^{f}(\rho) = \mu_{A}(f(\rho))$,

$$v^{f}_{\aleph}(\rho) = v_{A}(f(\rho)), \forall \rho \in X.$$

3. Intuitionistic Fuzzy RG-subalgebras of RG-algebra

In this section, we give the concept of an intuitionistic fuzzy RG-subalgebras of RG-algebra X.

Definition 3.1.Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy subset of

RG-algebra (X; *,0). X is said to be an intuitionistic fuzzy RG-subalgebra of X if

1) $\mu_{\aleph}(\rho * \tau) \ge \min \{\mu_{\aleph}(\rho), \mu_{\aleph}(\tau)\},\$

2) $\nu_{\aleph}(\rho * \tau) \leq \max \{ \nu_{\aleph}(\rho), \nu_{\aleph}(\tau) \}.$

That mean μ_{\aleph} is a fuzzy RG-subalgebra and ν_{\aleph} is a doubt fuzzy RG-subalgebra.

Example 3.2. Let $X = \{0, 1, 2, 3\}$ in which * is defined by the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then $\mu(x) = \begin{cases} 0.8 \ x = 0 \\ 0.3 \ x \in \{1,2,3\} \end{cases}$, $\nu(x) = \begin{cases} 0.2 \ x \in \{0,1\} \\ 0.4 \ x \in \{2,3\} \end{cases}$ μ_{\aleph} is a fuzzy RG-subalgebra and ν_{\aleph} is a doubt fuzzy RG-subalgebra, then $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ is intuitionistic fuzzy RG-subalgebra.

Proposition 3.3. Every intuitionistic fuzzy RG-subalgebra $\{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ of RG-algebra

(X; *,0), satisfies the inequalities $\mu_{\aleph}(0) \ge \mu_{\aleph}(\rho)$ and $\nu_{\aleph}(0) \le \nu_{\aleph}(\rho)$, for all $\rho \in X$.

Proof. For any $\rho \in X$, we have $\mu_{\aleph}(0) = \mu_{\aleph}(\rho * \rho) \ge \min\{\mu_{\aleph}(\rho), \mu_{\aleph}(\rho)\} = \mu_{\aleph}(\rho)$

and $\nu_{\aleph}(0) = \nu_{\aleph}(\rho * \rho) \le \max\{\nu_{\aleph}(\rho), \nu_{\aleph}(\rho)\} = \nu_{\aleph}(\rho)$.

Proposition 3.4: An intuitionistic fuzzy subset $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ is an intuitionistic fuzzy RG- subalgebra of RG-algebra (X; *,0), if for any $t \in [0,1]$, the set $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG-subalgebras.

Proof. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ be an intuitionistic fuzzy RG-subalgebra of X and set $U(\mu_{\aleph}, t) \neq \emptyset \neq L(\nu_{\aleph}, s)$.

If follows that for $\rho \in U(\mu_{\aleph}, t)$, $\tau \in U(\mu_{\aleph}, t)$, then $\mu_{\aleph}(\rho) \ge t$, $\mu_{\aleph}(\tau) \ge t$ which follow $\mu_{\aleph}(\rho * \tau) \ge \min \{\mu_{\aleph}(\rho), \mu_{\aleph}(\tau)\} \ge t$, So that $\rho * \tau \in U(\mu_{\aleph}, t)$.

Hence $U(\mu_{\aleph}, t)$ is an RG-subalgebra of X.

we prove that $L(v_{\aleph}, s)$ is an RG-subalgebra of X.

 $\rho \in L(v_{\aleph}, s)$ and $\tau \in L(v_{\aleph}, s)$ and $v_{\aleph}(\rho) \le s$ and $v_{\aleph}(\tau) \le s$

If follows that $\nu_{\aleph}(\rho * \tau) \le \max \{\nu_{\aleph}(\rho), \nu_{\aleph}(\tau)\} \le s$, So that $\rho * \tau \in L(v_{\aleph}, t)$.

Hence $L(v_{\aleph}, t)$ is an RG-subalgebra of X.

Proposition 3.5: In an intuitionistic fuzzy subalgebra $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$, if the upper level and lower level of (X; *,0), are RG-subalgebra, for all $t \in [0,1]$, then \aleph is an intuitionistic fuzzy RG-subalgebra of X.

Proof. Assume that for each $t \in [0,1]$ the set $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG-subalgebra of X. If there exist $\hat{\rho}$, $\hat{\tau} \in X$ be such that $\mu_{\aleph}(\hat{\rho} * \hat{\tau}) < \min\{\mu_{\aleph}(\hat{\rho}), \mu_{\aleph}(\hat{\tau})\}$, then $\hat{t} = \frac{1}{2}(\mu_{\aleph}(\hat{\rho} * \hat{\tau}) + \min\{\mu_{\aleph}(\hat{\rho}), \mu_{\aleph}(\hat{\tau})\})$

 $\mu_{\aleph}(\dot{\rho} * \dot{\tau}) < \dot{t}, \dot{\rho} * \dot{\tau} \notin U(\mu_{\aleph}, \dot{t})$ is not RG-subalgebra that mean it is contradiction.

Now, $\nu_{\aleph}(\dot{\rho} * \dot{\tau}) > \max\{\nu_{\aleph}(\dot{\rho}), \nu_{\aleph}(\dot{\tau})\}$, then $\dot{s} = \frac{1}{2} (\nu_{\aleph}(\dot{\rho} * \dot{\tau}) + \max\{\nu_{\aleph}(\dot{\rho}), \nu_{\aleph}(\dot{\tau})\})$

 $v_{\aleph}(\dot{\rho} * \dot{\tau}) < \dot{s}, \dot{\rho} * \dot{\tau} \notin L(v_{\aleph}, \dot{s})$ is not doubt RG- subalgebra that mean it is contradiction

Hence $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ be an intuitionistic fuzzy RG-subalgebra X.

Remark 3.6. Let (X; *,0) be an RG-algebra.

1) If μ_{\aleph} is an RG-subalgebra of X, then $\overline{\mu}_{\aleph} = 1 - \mu_{\aleph}$ is a doubt fuzzy RG-subalgebra of X.

2) If v_{\aleph} is a doubt fuzzy RG-subalgebra of X, then $\bar{v}_{\aleph} = 1 - v_{\aleph}$ is a fuzzy RG-subalgebra of X.

3) If μ_{\aleph} is an RG-ideal of RG-algebra of X, then $\bar{\mu}_{\aleph} = 1 - \mu_{\aleph}$ is a doubt fuzzy RG- ideal of X.

4) If v_{\aleph} is a doubt fuzzy RG- ideal of X, then $\bar{v}_{\aleph} = 1 - v_{\aleph}$ is a fuzzy RG-ideal of X.

Theorem 3.7. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy set of an RG-algebra (X; *, 0). \aleph is an intuitionistic fuzzy RG-subalgebra of X if and only if the fuzzy set $\mu_{\aleph}(\rho)$ is a fuzzy RG-subalgebra, $v_{\aleph}(\rho)$ is a doubt fuzzy RG-subalgebra of X.

Proof. Since $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy RG-subalgebra.

Cleary, $\mu_{\aleph}(\rho)$ is a fuzzy RG-subalgebra of X. For all $\rho, \tau \in X$, we have

$$\overline{v}_{\aleph}(\rho * \tau) = 1 - v_{\aleph}(\rho * \tau) \ge 1 - \max\{v_{\aleph}(\rho), v_{\aleph}(\tau)\}$$

$$\geq \min \left\{ 1 - \nu_{\aleph}(\rho), 1 - \nu_{\aleph}(\tau) \geq \min \{ \overline{\nu}_{\aleph}(\rho), \overline{\nu}_{\aleph}(\tau) \} \right\}$$

Hence \overline{v}_{\aleph} is fuzzy RG-subalgebra of X.

The conversely, assume that μ_{\aleph} , \overline{v}_{\aleph} are fuzzy RG-subalgebra of X, for every $\rho, \tau \in X$,

we get
$$\mu_{\aleph}(\rho * \tau) \ge \min\{\mu_{\aleph}(\rho), \mu_{\aleph}(\tau)\}$$
 and

$$1 - v_{\aleph}(\rho * \tau) = \overline{v}_{\aleph}(\rho * \tau) \ge \min \{ \overline{v}_{\aleph}(\rho), \overline{v}_{\aleph}(\tau) \}$$

$$=\min\{1-\nu_{\aleph}(\rho), 1-\nu_{\aleph}(\tau)\}$$

 $=1 - \max \{\nu_{\aleph}(\rho), \nu_{\aleph}(\tau)\}$

That is $v_{\aleph}(\rho * \tau) \leq \max \{v_{\aleph}(\rho), v_{\aleph}(\tau).$

Hence $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ an intuitionistic fuzzy RG-subalgebra.

Theorem 3.8. Let f: $(X; *, 0) \rightarrow (Y; *, 0)$ be a homomorphism of an RG-algebras (X; *, 0), (Y; *, 0) respectively. If $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ is an intuitionistic fuzzy RG-subalgebra of Y, then an

 $\aleph^{f} = \left\{ \left(\rho, \mu_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\rho)\right) \middle| \rho \in X \right\} \text{ is an intuitionistic fuzzy RG-subalgebra of } X.$

Proof . We first have that, $\forall \rho, \tau \in X$, then

$$\min\{\mu_{\aleph}^{f}(\rho), \mu_{\aleph}^{f}(\tau)\} = \min\{\mu_{\aleph}(f(\rho)), \nu_{\aleph}(f(\tau))\} \le \mu_{\aleph}(f(\rho * \tau)) = \mu_{\aleph}^{f}(\rho * \tau) \text{ and }$$

$$\max \{v_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\tau)\} = \max \{v_{\aleph}(f(\rho)), v_{\aleph}(f(\tau))\} \ge v_{\aleph}(f(\rho * \tau)) = v_{\aleph}^{f}(\rho * \tau).$$

 $\aleph^{f} = \left\{ \left(\rho, \mu_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\rho)\right) \middle| \rho \in X \right\} \text{ is an intuitionistic fuzzy RG-subalgebra of } X. \blacksquare$

Theorem 3.9. Let f: $(X; *, 0) \rightarrow (Y; *, 0)$ be a homomorphism of an RG-algebras algebras (X; *,0), (Y; *,0) respectively. If an $\aleph^{f} = \{(\rho, \mu_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\rho)) | \rho \in X\}$ is an intuitionistic fuzzy RG-subalgebra of X, then $\aleph = \{(\rho, \mu_{\aleph}(\rho), v_{\aleph}(\rho)) | \rho \in X\}$ is an intuitionistic fuzzy RG-subalgebra of Y.

Proof. We first have that, $\forall \rho, \tau \in Y$, then $f(a)=\rho$, $f(b)=\tau$, and f(a * b) = x * 'y, for some $a, b \in X$, $\mu_{\aleph}^{f}(\rho) = \mu_{\aleph}(f(a)), \mu_{\aleph}^{f}(\tau) = \mu_{\aleph}(f(b))$, and $\mu_{\aleph}^{f}(\rho * \tau) = \mu_{\aleph}(f(a * b))$,

$$\mu_{\aleph}^{f}(\rho *' \tau) = \mu_{\aleph}(f(a * b))$$

$$\geq \min\{\mu_{\aleph}(f(a)), \mu_{\aleph}(f(b))\}$$

$$=\min\{\mu_{\aleph}^{f}(\rho), \mu_{\aleph}^{f}(\tau)\} \text{ and}$$

$$, \nu_{\aleph}^{f}(\rho) = \nu_{\aleph}(f(a)), \nu_{\aleph}^{f}(\tau) = \nu_{\aleph}(f(b)) \text{ And}$$

 $v^{f}_{\aleph}(\rho * '\tau) = v_{\aleph}(f(a * b))$

 $\leq \max\{\nu_{\aleph}(f(a)), \nu_{\aleph}(f(b))\} \\ = \max\{v_{\aleph}^{f}(\rho), v_{\aleph}^{f}(\tau)\}$

Hence $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ is an intuitionistic fuzzy RG-subalgebra of Y.

Definition 3.10: Let $\aleph_i = \{(\rho, \mu_{\aleph_i}(\rho), \nu_{\aleph_i}(\rho)) \mid \rho \in X\}$ be a an intuitionistic subset of RG-algebra (X; *, 0) where $i \in \Lambda$, then

1. The R- intersection of any set of intuitionistic subsets of X is $(\cap \mu_{\aleph_i})(\rho) = \inf \mu_{\aleph_i}(\rho)$, $(\cup v_{\aleph_i})(\rho) = \sup v_{\aleph_i}(\rho)$.

2. The P- intersection of any set of intuitionistic subsets of X is $(\cap \mu_{\aleph_i})(\rho) = \inf \mu_{\aleph_i}(\rho)$, $(\cap v_{\aleph_i})(\rho) = \inf v_{\aleph_i}(\rho)$.

3. The P-union of any set of intuitionistic subsets of X is $(\bigcup \mu_{\aleph_i})(\rho) = \operatorname{sub} \mu_{\aleph_i}(\rho), (\bigcup v_{\aleph_i})(\rho) = \sup v_{\aleph_i}(\rho).$

4. The R-union of any set of intuitionistic subsets of X is $(\bigcup \mu_{\aleph_i})(\rho) = \text{sub } \mu_{\aleph_i}(\rho), (\bigcap v_{\aleph_i})(\rho) = \inf v_{\aleph_i}(\rho)$.

Theorem 3.11: Let $\{\aleph_i | i = 1, 2, 3, ...\}$ be a family of intuitionistic fuzzy RG-subalgebra of RGalgebra (X;*,0), then the R- intersection of intuitionistic \aleph_i is an intuitionistic fuzzy RG-subalgebra of X is intuitionistic fuzzy RG-subalgebra of X is an intuitionistic fuzzy RG-subalgebra where \cap $\aleph_i = (\inf \mu_{\aleph_i}(\rho), \sup \nu_{\aleph_i}(\rho)).$

Proof. Let $\rho, \tau \in \bigcap_{\aleph_i}$, then $\rho, \tau \in \aleph_i$ for all $i \in \Lambda$

 $\bigcap \mu_{\aleph_{i}}(\rho \ast \tau) = \min\{\mu_{\aleph_{i}}(\rho^{\ast}\tau)\} \geq \min\{\min\{\mu_{\aleph_{i}}(\rho), \mu_{\aleph_{i}}(\tau)\}\} \geq \min\{\cap \mu_{\aleph_{i}}(\rho), \cap \mu_{\aleph_{i}}(\tau)\} \text{ and }$

 $\cup v_{\aleph_{i}}(\rho \ast \tau) = \max\{\nu_{\aleph_{i}}(\rho^{\ast}\tau)\} \leq \max\{\max\{\nu_{\aleph_{i}}(\rho), \nu_{\aleph_{i}}(\tau)\}\} \leq \max\{\cup \nu_{\aleph_{i}}(\rho), \cup \nu_{\aleph_{i}}(\tau)\}.$

Then R-intersection of intuitionistic ℵ_i is an intuitionistic fuzzy RG-subalgebra of X.■

Proposition 3.12: The P-intersection of any set \aleph_i of intuitionistic subset of X, then the P-intersection of \aleph_i is an intuitionistic fuzzy RG-subalgebra of X, where v_{\aleph_i} chain (Arterian).

Proof. By using Proposition (2.25) and Proposition (2.22).■

Remark 3.14. If v_{\aleph_i} is not chain in Proposition (3.13), then it is not true as the following example.

Example 3.15. Consider X in Example (3.2)

Х	0	1	2	3
μ _×	0.9	0.9	0.2	0.2
μ_{B}	0.7	0.1	0.7	0.1
μ _× ∪μ _B	0.9	0.9	0.7	0.2
μ _× ∩ μ _B	0.7	0.1	0.2	0.1
V _X	0.2	0.7	0.2	0.7
v _B	0.3	0.8	0.9	0.3
$v_{\aleph} \cup v_B$	0.3	0.8	0.9	0.7
$v_{\aleph} \cap v_B$	0.2	0.7	0.2	0.3

It is easy to show that $\inf \mu_{\aleph_i}(\rho)$ is a fuzzy RG-subalgebra, but $v_{\aleph} \cap v_B$ is not doubt fuzzy RG-subalgebra of X, since $\rho = 2, \tau = 3$,

 $v_{\aleph} \cap v_{B} (2 * 3) = 0.7 \le \max \{v_{\aleph} \cap v_{B} (2), v_{\aleph} \cap v_{B} (3)\} = 0.3$

Proposition 3.15. The P-union of any set \aleph_i of intuitionistic subset of X, then the P-union \aleph_i is an intuitionistic fuzzy RG-subalgebra of X, where μ_{\aleph_i} be a chain (Notherian)

Proof. By using Proposition (2.26) and Proposition (2.23).■

Remark 3.16. If μ_{\aleph_i} is not chain in Proposition (3.15), then it is not true as the following example.

Example 3.18. In the Example (3.14), then $(\mu_{\aleph} \cup \mu_B)$ are not fuzzy RG-subalgebra of X since

 $(\mu_{\aleph} \cup \mu_{B})(0 * 3) = (\mu_{\aleph} \cup \mu_{B})(3) = 0.2 \ge 0.7 = \min \{ (\mu_{\aleph} \cup \mu_{B})(1 * 3), (\mu_{\aleph} \cup \mu_{B})(0 * 1) \} (\mu_{\aleph} \cup \mu_{B})(3) = 0.2 \ge 0.7 = \min \{ (\mu_{\aleph} \cup \mu_{B})(2), (\mu_{\aleph} \cup \mu_{B})(1) \}.$

Proposition 3.18: The R-union of any set \aleph_i of intuitionistic subset of an RG-algebra (X; *,0), then the R-union \aleph_i is an intuitionistic fuzzy RG-subalgebra of X, where v_{\aleph_i} is chain (Arterian) and μ_{\aleph_i} chain (Notherian).

Proof. By using Proposition (2.15(2)) and Proposition (2.24(2)).

Remark 3.19. If μ_{\aleph_i} is not chain in Proposition (3.18), as seen in the following example, this is not the case.

Example 3.20. Consider X in Example (3.2)

Х	0	1	2	3
μ _×	0.9	0.9	0.2	0.2
μ_{B}	0.7	0.1	0.7	0.1
μ _% ∪ μ _Β	0.9	0.9	0.7	0.2
V _X	0.2	0.2	0.4	0.4
v _B	0.3	0.5	0.3	0.5
$v_{\aleph} \cap v_B$	0.2	0.2	0.3	0.4

Then $(\mu_{\aleph} \cup \mu_B)$ are not fuzzy RG-subalgebra of X since if $\rho=2, \tau=1$ $\mu_{\aleph} \cup \mu_B(2 * 1) = \mu_{\aleph} \cup \mu_B(3) = 0.2 \ge 0.7=\min \{(\mu_{\aleph} \cup \mu_B)(2), (\mu_{\aleph} \cup \mu_B)(1)\}$

 $\mu_{\aleph} \cup \mu_{B}(3) = 0.2 \ge 0.7 = \min\{0.7, 0.9\}.$

4. Intuitionistic Fuzzy RG-ideals of RG-algebra

In this section, we give the concept of an intuitionistic fuzzy RG-ideals of RG-algebra X.

Definition 4.1. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ be an intuitionistic fuzzy subset of

RG-algebra (X; *,0). \aleph is said to be an intuitionistic fuzzy RG-ideal of X if, for all ρ , $\tau \in X$, then

1) $\mu_{\aleph}(0) \ge \mu_{\aleph}(\rho)$ and $\nu_{\aleph}(0) \le \nu_{\aleph}(\rho)$,

2) $\mu_{\aleph}(0 * \tau) \ge \min\{\mu_{\aleph}(\rho * \tau), \mu_{\aleph}(0 * \rho)\}$ and $\nu_{\aleph}(0 * \tau) \le \max\{\nu_{\aleph}(\rho * \tau), \nu_{\aleph}(0 * \rho)\}$.

That means μ_{\aleph} is a fuzzy RG-ideal and ν_{\aleph} is a doubt fuzzy RG-ideal.

Example 4.2. Let $X = \{a,b,c\}$ with * and constand (0) is defined by:

*	0	а	b	с
0	0	с	b	a
a	a	b	с	0
b	b	а	0	c
с	c	0	a	b

 $\mu_A(x) = \begin{cases} 0.3 \ x = 0\\ 0.1 \ x \in \{a, b, c\} \end{cases} \text{ and } \nu_A(x) = \begin{cases} 0.2 \ x = 0\\ 0.3 \ x \in \{a, b, c\} \end{cases}. \text{ We can see that } \mu_\aleph \text{ is a fuzzy RG-ideal and } \nu_\aleph \text{ is doubt-fuzzy RG-ideal of } X, \text{ then } \aleph \text{ is an intuitionistic fuzzy RG-ideal of } X. \end{cases}$

Proposition 4.3. If an intuitionistic fuzzy subset $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ is an intuitionistic fuzzy RG- ideal of RG-algebra (X; *,0), then for any $t \in [0,1]$, the set $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG-ideals of X.

Proof. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ be an intuitionistic fuzzy RG- ideal of X and set $U(\mu_{\aleph}, t) \neq \emptyset \neq L(\nu_{\aleph}, s)$. Since $\mu_{\aleph}(0) \ge t, \nu_{\aleph}(0) \le s$, let $\rho, \tau \in X$ be such that $\rho * \tau \in U(\mu_{\aleph}, t)$ and $0 * \rho \in U(\mu_{\square}\aleph, t)$ and $\mu_{\aleph}(\rho * \tau) \ge t$ and $\mu_{\aleph}(0 * \rho) \ge t$. If follows that

 $\mu_{\aleph}(0 * \tau) \ge \min \left\{ \mu_{\aleph}(\rho * \tau), \mu_{\aleph}(0 * \rho) \right\} \ge t$

So that $0 * \tau \in U(\mu_{\aleph}, t)$, That mean $U(\mu_{\aleph}, t)$ is an RG-ideal of X.

In similarly, way can prove that $L(v_8, s)$ is an RG-ideal of X.

 $\rho * \tau \in L(\nu_{\aleph}, s)$ and $0 * \rho \in L(\nu_{\aleph}, s)$ and $\nu_{\aleph}(\rho * \tau) \leq s$ and $\nu_{\aleph}(0 * \rho) \leq s$

If follows that $v_{\aleph}(0 * \tau) \le \max \{v_{\aleph}(\rho * \tau), v_{\aleph}(0 * \rho)\} \le s$

So that $0 * \tau \in L(v_{\aleph}, s)$, that mean $L(v_{\aleph}, s)$ is an RG-ideal of X.

Proposition 4.4. If An intuitionistic fuzzy subset $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ the sets $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG-ideals of RG-algebra (X; *,0), for all $t \in [0,1]$, then \aleph is an intuitionistic fuzzy subset is intuitionistic fuzzy RG-ideal of RG-algebra X.

Proof. Assume that for each $t \in [0,1]$ the set $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG- ideals of X. For any $\rho \in X$ let that $\mu_{\aleph}(\rho) \ge t$ and $\nu_{\aleph}(\rho) \le s$, then $\rho \in U(\mu_{\aleph}, t) \cap L(\nu_{\aleph}, s)$ and so $U(\mu_{\aleph}, t) \ne \emptyset \ne L(\nu_{\aleph}, s)$

Since $U(\mu_{\aleph}, t)$ and $L(\nu_{\aleph}, s)$ are RG-ideals of X

There for $0 \in U(\mu_{\aleph}, t) \cap L(\nu_{\aleph}, s)$ hence $\mu_{\aleph}(0) \ge t = \mu_{\aleph}(\rho), \nu_{\aleph}(0) \le s = \nu_{\aleph}(\rho).$

For all $\rho, \tau \in X$ if there exists such that $\mu_{\aleph}(0 * \tau) < \min\{\mu_{\aleph}(\rho * \tau), \mu_{\aleph}(0 * \rho)\}$

We taking $\dot{t} = \frac{1}{2} (\mu_{\aleph}(0 * \dot{\tau}) + \min\{\mu_{\aleph}(\rho' * \dot{\tau}), \mu_{\aleph}(0 * \dot{\rho})\})\}$, we get

 $\mu_{\aleph}(0 * \hat{\tau}) < t \leq \min\{\mu_{\aleph}(\rho' * \hat{\tau}), \mu_{\aleph}(0 * \hat{\rho})\} \text{ that mean } 0 * \hat{\tau} \notin U(\mu_{\aleph}, \hat{t})$

 $U(\mu_{\aleph}, t)$ is not RG-ideal of X leading to contradiction.

In other way, $\nu_{\aleph}(0 * \tau) > \max\{\nu_{\aleph}(\rho * \tau), \nu_{\aleph}(0 * \rho)\}$

We taking $\dot{s} = \frac{1}{2} (v_{\aleph}(0 * \dot{\tau}) + \max\{v_{\aleph}(\rho' * \dot{\tau}), v_{\aleph}(0 * \dot{\rho})\})$, then

 $\nu_{\aleph}(0 * \acute{\tau}) > \acute{s} > max\{\nu_{\aleph}(\rho' * \acute{\tau}), \nu_{\aleph}(0 * \acute{\rho})\}, \text{ since } 0 * \acute{\tau} \notin L(\nu_{\aleph}, \acute{s})$

 $L(\nu_{\aleph}, \acute{s}$) is not RG-ideal of X leading to contradiction.

Hence $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ is an intuitionistic fuzzy RG-ideal of X.

Proposition 4.5. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy RG-ideal of RGalgebra (X; *,0), then \aleph is an intuitionistic fuzzy RG-subalgebra of X.

Proof. By Proposition (4.4) and Proposition (2.14) and Proposition (3.5). ■

Theorem 4.6. Let $\{\aleph_i | i = 1, 2, 3, ...\}$ be a family of intuitionistic fuzzy RG-ideal of RG-algebra (X; *,0), then the R-intersection of intuitionistic Ai is an intuitionistic fuzzy RG- RG-ideal of X is an intuitionistic fuzzy RG-ideal of X, where $\cap \aleph_i = (\inf \mu_{\aleph_i}(\rho), \sup \nu_{\aleph_i}(\rho))$.

Proof. Let $\rho, \tau \in \bigcap_{\aleph_i}$, then $\rho, \tau \in \aleph_i$, for all $i \in \Lambda$

 $\bigcap \mu_{\aleph_{i}}(0) = \bigcap \mu_{\aleph_{i}}(\rho * \rho) \ge \min\{\bigcap \mu_{\aleph_{i}}(\rho), \bigcap \mu_{\aleph_{i}}(\rho)\} = \bigcap \mu_{\aleph_{i}}(\rho),$

 $\cup v_{\aleph_{i}}(0) = \cup v_{\aleph_{i}}(\rho * \rho) \leq \max\{ \cup v_{\aleph_{i}}(\rho), \cup v_{\aleph_{i}}(\rho) \} = \cup v_{\aleph_{i}}(\rho).$

$$\bigcap \mu_{\aleph_{i}}(0 \ast \tau) = \min\{\mu_{\aleph_{i}}(0 \ast y)\} \ge \min\{\min\{\mu_{\aleph_{i}}(\rho \ast \tau), \mu_{\aleph_{i}}(0 \ast \rho)\}\}$$

 $\geq \min\{\cap \mu_{\aleph_i}(\rho * \tau), \cap \mu_{\aleph_i}(0 * \rho)\}$ and

 $\cup v_{\aleph_{i}}(0 * \tau) = \max\{v_{\aleph_{i}}(0 * y)\} \le \max\{\max\{v_{\aleph_{i}}(\rho * \tau), v_{\aleph_{i}}(0 * \rho)\}\}$

 $\leq \max \{ \cup \nu_{\aleph_i}(\rho * \tau), \cup \nu_{\aleph_i} (0 * \rho) \}.$

Then R-intersection of intuitionistic ℵ_iis an intuitionistic fuzzy RG-ideal of X.■

Proposition 4.7. The P-intersection of any set \aleph_i of intuitionistic subset of X, then P-intersection of \aleph_i is an intuitionistic fuzzy RG-ideal of X, where v_{\aleph_i} chain (Arterian).

Proof. By using Proposition (2.15(4)) and Proposition (2.24(4)).

Remark 4.8. If v_{\aleph_i} is not chain in Proposition (4.7), then it is not true as the following example.

Example 4.9. Consider X in Example (3.2)

Х	0	1	2	3
μ _א	0.9	0.9	0.2	0.2
μ _B	0.7	0.1	0.7	0.1
μ _κ ∪μ _Β	0.9	0.9	0.7	0.2
V _N	0.2	0.2	0.4	0.4
VB	0.3	0.5	0.3	0.5
v _× ∩v _B	0.2	0.2	0.3	0.4

It is easy to show that $\inf \mu_{\aleph_i}(\rho)$ is a fuzzy RG-ideal, but $v_{\aleph} \cap v_B$ is not doubt fuzzy RG-ideal of X, since $\rho = 2, \tau = 3, v_{\aleph} \cap v_B(0 * 3) = 0.4 \leq \max\{v_{\aleph} \cap v_B(2 * 3), v_{\aleph} \cap v_B(0 * 2)\} = 0.3$ and $v_B(3) = 0.4 \leq \max\{v_{\aleph} \cap v_B(1), v_{\aleph} \cap v_B(2)\} = 0.3$

Proposition 4.10. The P- union of \aleph_i of intuitionistic subset of X, then the P-union of \aleph_i is an intuitionistic fuzzy RG-ideal of X, where μ_{\aleph_i} be a chain (Noetherian)

Proof. If μ_{\aleph_i} is a chain (Noetherian), by using Proposition (2.24(3)) The union of any set of fuzzy RG-ideals of RG-algebra (X; *, 0) is also fuzzy RG-ideal of X, if μ_i is chain.

By Proposition (2.24(4)) the union of any set of doubt fuzzy RG -ideals of RG-algebra is also doubt fuzzy RG-ideal.

Then P-union of \aleph_i is an intuitionistic fuzzy RG-ideal of X.

Remark 4.11. If μ_{\aleph_i} is not chain in Proposition (4.10), then it is not true as the following example.

Example 4.12. Consider the following Example. (4.9), the $(\mu_{\aleph} \cup \mu_B)$ are not fuzzy RG-ideal of X,

let $\rho=1$, $\tau=3$ then we have

 $(\mu_{\aleph} \cup \mu_{B})(0 * 3) = (\mu_{\aleph} \cup \mu_{B})(3) \ge \min \{(\mu_{\aleph} \cup \mu_{B})(1 * 3), (\mu_{\aleph} \cup \mu_{B})(0 * 1)\}$

 $(\mu_{\aleph} \cup \mu_{B})(3) = 0.2 \ge 0.7 = \min \{(\mu_{\aleph} \cup \mu_{B})(2), (\mu_{\aleph} \cup \mu_{B})(1)\}$

Proposition 4.13. The R-union of \aleph_i of intuitionistic subset of a RG-algebra (X; *,0), then R-union of \aleph_i is an intuitionistic fuzzy RG-ideal of X, where μ_{\aleph_i} (Noetherian) is chain and v_{\aleph_i} chain(Arterian)

Proof. By using Proposition (2.15) the union of any set of fuzzy RG-ideals of RG-algebra (X; *, 0) is also fuzzy RG-ideal of X, if μ_i is chain (Noetherian). We have $\cup \mu_{\aleph_i}$ is fuzzy RG-ideal of X and by

using Proposition (2.24), the intersection of any set of doubt fuzzy RG-ideals of RG-algebra (X; *, 0) is also doubt fuzzy RG-ideal of X where is chain (Arterian). $\cap v_{\aleph_i}$ is doubt fuzzy RG-ideal.

Hence the R-union of \aleph_i is intuitionistic fuzzy RG-ideal of X.

Remark 4.14. If v_{\aleph_i} or μ_{\aleph_i} are not (chain (Arterian), chain (Notherian)) respectively in Proposition (4.13), then it is not true as the following example.

Example 4.15. Consider X in Example (3.2)

Х	0	1	2	3
μ _×	0.9	0.9	0.2	0.2
$\mu_{\rm B}$	0.7	0.1	0.7	0.1
μ _ℵ ∪ μ _Β	0.9	0.9	0.7	0.2
V _X	0.2	0.2	0.4	0.4
v _B	0.3	0.5	0.3	0.5
$v_{\aleph} \cap v_B$	0.2	0.2	0.3	0.4

Then $(\mu_{\aleph} \cup \mu_B)$ are not fuzzy RG-ideal of X, since

$$\mu_{\aleph} \cup \mu_{B}(0 * 3) = \mu_{\aleph} \cup \mu_{B}(3) = 0.2 \ge 0.7 = \min \{(\mu_{\aleph} \cup \mu_{B})(1 * 3), (\mu_{\aleph} \cup \mu_{B})(0 * 1)\}$$

 $\mu_{\aleph} \cup \mu_{B}(3) = 0.2 \ge 0.7 = \min \{(\mu_{\aleph} \cup \mu_{B})(2), (\mu_{\aleph} \cup \mu_{B})(1)\}$

And $v_{\aleph} \cap v_{B}$ is not doubt fuzzy RG-ideal of X since $\rho = 2, \tau = 3$,

 $(v_{\aleph} \cap v_B)(0*3) = 0.4 \le \max\{(v_{\aleph} \cap v_B)(2*3), (v_{\aleph} \cap v_B)(0*2)\} = 0.3$

 $(v_A \cap v_B)(3) = 0.4 \le \max\{(v_A \cap v_B)(1), (v_A \cap v_B)(2)\} = 0.3$

Theorem 4.16. Let $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy RG-ideal of X if and only if the fuzzy set $\mu_{\aleph}(\rho)$ and $\overline{\nu}_{\aleph}(\rho)$ are fuzzy RG-ideal of X.

Proof. Since $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ be an intuitionistic fuzzy RG-ideal. Cleary, $\mu_{\aleph}(\rho)$ is a fuzzy RG-ideal of X. For all $\rho, \tau \in X$, we have

 $\bar{v}_{\aleph}(0) = 1 - v_{\aleph}(0) \ge 1 - v_{\aleph}(\rho) = \bar{v}_{\aleph}(\rho)$

 $\bar{v}_{\aleph}(0 * \tau) = 1 - v_{\aleph}(0 * \tau) \ge 1 - \max\{v_{\aleph}(\rho * \tau), v_{\aleph}(0 * \rho)\}$

 $\geq \min\left\{1-\nu_{\aleph}(\rho*\tau),1-\nu_{\aleph}(0*\rho)\right\} \geq \min\left\{\bar{\nu}_{\aleph}(\rho*\tau),\bar{\nu}_{\aleph}(0*\rho)\right\}.$

Hence \overline{v}_{\aleph} is fuzzy RG-ideal of X.

The conversely, assume that $\mu_{\aleph}, \overline{v}_{\aleph}$ are fuzzy RG-ideal of X, for every $\rho, \tau \in X$, we get

$$\begin{split} \mu_\aleph(0) \geq \mu_\aleph(\rho), 1 - \nu_\aleph(0) &= \bar{\nu}_\aleph(0) \geq \bar{\nu}_\aleph(\rho) = 1 - \nu_\aleph(\rho) \text{ that is } \nu_\aleph(0) \leq \nu_\aleph(\rho), \mu_\aleph(0*\tau) \geq \\ \min\{\mu_\aleph(\rho*\tau), \mu_\aleph(0*\rho)\} \text{ and } 1 - \nu_\aleph(0*\tau) = \bar{\nu}_\aleph(0*\tau) \end{split}$$

 $\geq \min \{ \overline{\nu}_{\aleph}(\rho * \tau), \overline{\nu}_{\aleph}(0 * \rho) \} = \min \{ 1 - \nu_{\aleph}(\rho * \tau), 1 - \nu_{\aleph}(0 * \rho) \}$

 $=1 - \max \{\nu_{\aleph}(\rho * \tau), \nu_{\aleph}(0 * \rho)\}$

That is $v_{\aleph}(0 * \tau) \leq \max \{v_{\aleph}(\rho * \tau), v_{\aleph}(0 * \rho)\}.$

Hence $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) | \rho \in X\}$ an intuitionistic fuzzy RG-ideal.

Theorem 4.17. Let f: (X;*,0) \rightarrow (Y;*',0')be a homomorphism of RG-algebra if B = $(\mu_B(\rho), \nu_B(\rho))$ is an intuitionistic fuzzy RG-ideal of Y with sup and inf properties, then the preimage f⁻¹ (B) = (f⁻¹ (μ_B), f⁻¹ (ν_B) of B under f in X is an intuitionistic fuzzy RG-ideal of X.

Proof. For all $\rho \in X$, $f^{-1}(\mu_B)(\rho) = \mu_B(f(\rho)) \le \mu_B(f(0)) = \mu_B(0) = f^{-1}(\mu_B)(0)$

$$f^{-1}(\nu_B)(\rho) = \nu_B(f(\rho)) \ge \nu_B(f(0)) = \nu_B(0) = f^{-1}(\nu_B)(0).$$

Let $\rho, \tau \in X$, then $f^{-1}(\mu_B)(0 * \tau) = \mu_B(f(0 * \tau)) = \mu_B(f(0) * f(\tau))$

 $\geq \min\{\mu_B(f(\rho) \star f(\tau)), \mu_B(f(0) \star f(\rho))\} = \min\{\mu_B(f(\rho \star \tau)), \mu_B(f(0 \star \rho))\}$

=min{ $f^{-1}(\mu_B)(\rho * \tau), f^{-1}(\mu_B)(0 * \rho)$ }

and $f^{-1}(v_B)(0 * \tau) = v_B(f(0 * \tau)) = v_B(f(0) * f(\tau))$

$$\leq \max\{\nu_{B}(f(\rho) \star f(\tau)), \nu_{B}(f(0) \star f(\rho))\}$$

 $= \max \{ v_B(f(\rho * \tau)), v_B(f(0 * \rho)) \}$

=max{ $f^{-1}(v_B)(\rho * \tau), f^{-1}(v_B)(0 * \rho)$ }.

Hence $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\nu_B))$ of B under f in X is an intuitionistic fuzzy RG-ideal of X.

Theorem 4.18. Let f: $(X; *, 0) \rightarrow (Y; *, 0)$ be epimorphism of RG-algebras, if $\aleph = (\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho))$ is an intuitionistic fuzzy RG-ideal of X with sup and inf properties, then $f(\aleph) = (\tau, f(\mu_{\aleph})(y), f(\nu_{\aleph})(\tau))$ of \aleph is an intuitionistic fuzzy RG-ideal of Y.

Proof.

1) For all $\rho \in X$, there exists $\tau \in Y$ such that $f(\rho)=\tau$. Since $\mu_{\aleph}(0) \ge \mu_{\aleph}(\rho)$, then $f(\mu_{\aleph})(0) \ge f(\mu_{\aleph})(\tau)$ and $\nu_{\aleph}(0) \le \nu_{\aleph}(\rho)$, then $f(\nu_{\aleph})(0) \le f(\nu_{\aleph}(a))$.

2) Let $a, b \in X$, then $\rho, \tau \in Y$ such that $f(a)=\rho$, $f(b)=\tau$, and f(a * b) = x * 'y

And f(0 * a) = 0' * 'x, and f(0 * b) = 0' * 'y.

$$\mu^f_\aleph(\rho) = \mu_\aleph(f(a)), \ \mu^f_\aleph(\tau) = \mu_\aleph(f(b)), \ \text{and} \ \mu^f_\aleph(\rho \ast \tau) = \mu_\aleph(f(a \ast b)),$$

 $\mu^{f}_{\aleph}(0'*'\tau) = \mu_{\aleph}(f(0)*'f(b)) = \mu_{\aleph}(f(0*b))$

 $\geq \min\{\mu_{\aleph}(f(a * b)), \mu_{\aleph}(f(0 * \rho))\}$

$$=\min\{\mu_{\aleph}(f(a) * f(b)), \mu_{\aleph}(f(0) * f(\rho))\}$$

 $=\!\!\min\!\left\{\mu^f_\aleph(\rho*{'\tau}),\mu^f_\aleph(0'*{'x})\right\}$ and

$$v^{\mathrm{f}}_{\aleph}(\rho) = v_{\aleph}(f(a)), v^{\mathrm{f}}_{\aleph}(\tau) = v_{\aleph}(f(b)), \text{ and } v^{\mathrm{f}}_{\aleph}(\rho \ast \tau) = v_{\aleph}(f(a \ast b)),$$

$$v_{\aleph}^{f}(0' * '\tau) = v_{\aleph}(f(0) * 'f(b)) = v_{\aleph}(f(0 * b)) \le \max\{v_{\aleph}(f(a * b)), v_{\aleph}(f(0 * \rho))\}$$

 $= max\{v_{\aleph}(f(a) * {}^{\prime}f(b)), v_{\aleph}(f(0) * {}^{\prime}f(\rho))\} = min\{v_{\aleph}^{f}(\rho * {}^{\prime}\tau), v_{\aleph}^{f}(0' * {}^{\prime}x)\} \text{ and }$

Hence $f(\aleph) = (f(\mu_{\aleph}), f(\nu_{\aleph}))$ of \aleph is an intuitionistic fuzzy RG-ideal of Y.

Proposition 4.19. Every intuitionistic fuzzy RG-ideal of RG-algebra (X; *, 0) is an intuitionistic fuzzy RG-subalgebra of X.

Proof. By using Proposition (2.24(4)) and Proposition (2.14).

Remark 4.20. The converse of Proposition (4.19) is not true as the following example:

Example 4.21. Consider X in Example (3.2)

Then $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ be an intuitionistic fuzzy RG-subalgebra of X

when $\mu(x)$ is fuzzy RG-ideal $\mu(x) = \begin{cases} 0.8 \ x = 0 \\ 0.3 \ x \in \{1,2,3\} \end{cases}$ and $v(\rho)$ is a doubt fuzzy RG-subalgebra of $X \nu(\rho) = \begin{cases} 0.3 \ \rho \in \{0,3\} \\ 0.8 \ \rho = 1 \\ 0.9 \ \rho = 2 \end{cases}$.

But $v(\rho)$ is not a doubt fuzzy RG-ideal since Let $\rho=1$, $\tau=2$ then $v(0 * 2) = 0.9 \le \max\{v(1 * 2), v(0 * 1)\} = 0.8$.

 $\aleph = \{(\rho, \mu_{\aleph}(\rho), \nu_{\aleph}(\rho)) \mid \rho \in X\}$ is not intuitionistic fuzzy RG-ideal of RG-algebra

References.

- [1] K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, vol.20, no.1(1986), pp: 87-96.
- [2] K.T. Atanassov, New Operations Defined over the Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, vol.61, no.2(1994), pp: 137-142.
- [3] K.T. Atanassov, On Intuitionistic Fuzzy Sets Theory. Published by Springer-Verlag Berlin: Heidelberg, 2012.
- [4] K.T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Studies in Fuzziness and Soft Computing, vol. 35, Physica-Verlag, Heidelberg, New York, 1999.
- [5] A.T. Hameed, Fuzzy Ideals of Some Algebras, PH. Sc. Thesis, AinShams University, Faculty of Sciences, Egypt, 2015.
- [6] AT. Hameed, and B.H. Hadi, Intuitionistic Fuzzy AT-Ideals on AT-algebras, Journal of Adv Research in Dynamical & Control Systems, vol.10, 10-Special Issue, 2018.
- [7] A.T. Hameed, A.S. abed and A.H. Abed, TL-ideals of BCC-algebras, Jour of Adv Research in Dynamical & Control Systems, Vol. 10, 11- Special Issue, (2018).

- [8] A.T. Hameed, Intuitionistic Fuzzy AT-ideals of AT-algebras, LAP LEMBERT Academic Publishing, Germany, 2019.
- [9] A.T. Hameed, S.M. Abrahem and A.H. Abed, Fuzzy RG-Ideals of RG-algebra, (2022), to appear.
- [10] J. . Hermina, N. S. . Karpagam, P. . Deepika, D. S. . Jeslet, and D. Komarasamy, "A Novel Approach to Detect Social Distancing Among People in College Campus", Int J Intell Syst Appl Eng, vol. 10, no. 2, pp. 153–158, May 2022.
- [11] A.T. Hameed, S.M. Abrahem and A.H. Abed, Doubt Fuzzy RG-ideals of RG-algebra, (2022), to appear.
- [12] S.M. Mostafa, M.A. Abd-Elnaby and O.R. Elgendy, Intuitionistic Fuzzy KU-ideals in KU-algebras, Int. Journal of Mathematical Sciences and Applications, vol.1, no.3(2011), pp: 1379-1384.
- [13] R.A.K. Omar, On RG-algebra, Pure Mathematical Sciences, vol.3, no.2 (2014), pp.59-70.
- [14] P. Patthanangkoor, RG-Homomorphism and Its Properties, Thai Journal of Science and Technology, vol.7, no.5 (2018), pp: 452-459.
- [15] T. Senapati, M. Bhowmik, and M. Pol, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy subalgebras and ideals in BCK/BCI-algebras, Journal Eurasian Mathmatical, vol. 6, no. 1(2015), pp: 96-114.
- [16] T. Senapati, M. Bhowmik, and M. Pol, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI-algebras, vol. 19, no. 1(2013), pp: 32-47.
- [17] L.A. Zadeh, Fuzzy Sets, Inform. And Control, vol.8(1965), pp: 338-353.
- [18] M.R. Farahani, S. Jafari, S.A. Mohiuddine, M. Cancan. Intuitionistic fuzzy stability of generalized additive set-valued functional equation via fixed point Method. Mathematical Statistician and Engineering Applications. 71(3s3), 2022, 141-152.
- [19] Garg, D. K. (2022). Understanding the Purpose of Object Detection, Models to Detect Objects, Application Use and Benefits. International Journal on Future Revolution in Computer Science & Amp; Communication Engineering, 8(2), 01–04. https://doi.org/10.17762/ijfrcsce.v8i2.2066
- [20] S.M. Kadham, A.N. Alkiffai.A New Fuzzy Technique for Drug Concentration in Blood. Mathematical Statistician and Engineering Applications. 71(3s3), 2022, 210-222.
- [21] R.H. Hasan, A.N. Alkiffai. Solving Thermal System Using New Fuzzy Transform. Mathematical Statistician and Engineering Applications. 71(3s3), 2022, 223-236.
- [22] D.E. Abdulrasool, A.N. Alkiffai. Investigation of A Fuzzy Integral Equation by Fuzzy Integral Transforms. Mathematical Statistician and Engineering Applications. 71(3s3), 2022, 74-81.